1 Introduction

Information regarding tax revenues in African countries remains a complex subject, characterized by limited data availability and substantial publication delays. The OECD report of 2023 encompasses only 33 countries, with data extending up to the year 2021 (OECD 2023).1 Some countries have data dating back to the 1990s, and the report provides internationally comparable figures for various taxes, particularly focusing on revenues relative to GDP.

Alternatively, the African Tax Administration Forum (ATAF) offers a databank containing tax data and certain macroeconomic variables (https://www.ataftax.org/), covering the years 2010 through 2022. Tax revenues and GDP are reported in PPP-adjusted US Dollars. In this data story, tax revenues are presented relative to GDP to facilitate comparability with OECD figures.

Given the comprehensive overview provided by the OECD (2023) for countries reporting to the organization, this data narrative emphasizes the comparison of the two distinct data sources and seeks to establish connections between the tax data and information from the Africa Monitor.

Data about tax revenues in African countries is still a challenging topic. Data availability is limited, and publication delays are relatively large. The OECD report from the year 2023 only covers 33 countries with data reaching to the year 2021 (OECD 2023). For some countries data reaches back in the 1990s. Revenues for many different taxes are reported in an internationally comparable manner. In the following, revenues relative to GDP are described.

Table 1: List of countries covered in different data banks


Africa Monitor

OECD (Taxes)

ATAF (Taxes)

Algeria

DZA

Angola

AGO

AGO

Benin

BEN

BEN

Botswana

BWA

BWA

BWA

Burkina Faso

BFA

BFA

BFA

Burundi

BDI

BDI

Cameroon

CMR

CMR

CMR

Cape Verde

CPV

CPV

CPV

Central African Republic

CAF

Chad

TCD

TCD

TCD

Comoros

COM

Congo - Brazzaville

COG

COG

COG

Congo - Kinshasa

COD

COD

COD

Côte d’Ivoire

CIV

CIV

CIV

Djibouti

DJI

Egypt

EGY

EGY

Equatorial Guinea

GNQ

GNQ

Eritrea

ERI

Eswatini

SWZ

SWZ

SWZ

Ethiopia

ETH

Gabon

GAB

GAB

GAB

Gambia

GMB

GMB

Ghana

GHA

GHA

GHA

Guinea

GIN

GIN

GIN

Guinea-Bissau

GNB

GNB

Kenya

KEN

KEN

KEN

Lesotho

LSO

LSO

LSO

Liberia

LBR

LBR

Libya

LBY

Madagascar

MDG

MDG

MDG

Malawi

MWI

MWI

MWI

Mali

MLI

MLI

MLI

Mauritania

MRT

MRT

MRT

Mauritius

MUS

MUS

MUS

Morocco

MAR

MAR

MAR

Mozambique

MOZ

MOZ

Namibia

NAM

NAM

NAM

Niger

NER

NER

NER

Nigeria

NGA

NGA

NGA

Rwanda

RWA

RWA

RWA

Senegal

SEN

SEN

SEN

Seychelles

SYC

SYC

SYC

Sierra Leone

SLE

SLE

SLE

Somalia

SOM

South Africa

ZAF

ZAF

ZAF

South Sudan

SSD

SSD

Sudan

SDN

SDN

São Tomé & Príncipe

STP

Tanzania

TZA

TZA

Togo

TGO

TGO

TGO

Tunisia

TUN

TUN

Uganda

UGA

UGA

UGA

Western Sahara

ESH

Zambia

ZMB

ZMB

Zimbabwe

ZWE

ZWE

Number

55

33

42

1.1 Similarities and differences between OECD and ATAF data bank

The ATAF data bank, while offering a broader coverage of countries, is characterized by less detailed information, and tax revenues follow different definitions. Table 2 presents an average and a comparison of tax revenues relative to GDP for the years and countries covered by both data banks. Notably, the ATAF data bank provides two distinct items for VAT (domestic and imported), which are aggregated for direct comparison with figures from the OECD data bank.

Table 2: Comparison between data banks

Total Tax PIT CIT VAT
OECD 15.3 2.8 2.7 4.5
ATAF 14.9 3.0 2.6 5.7
Relative to GDP in %.

Source: ATAF, OECD, own calculation.


Results for total tax revenues, personal income tax (PIT) and corporate income tax (CIT) are quite similar. The discrepancy for value added tax (VAT) is already sizeable. Furthermore, differences in the magnitude and the dynamics in tax revenues can be quite sizeable for single countries, see Figure 1.

Figure 1: Total tax revenues according to both data banks in selected African countries

% relative to GDP.

Source: ATAF, OECD, own calculation.


For some countries and some taxes figures from both data banks are pretty close (ZAF) while for other countries substantial differences show up (CMR).

Figure 2: Personal income tax in selected countries and according to different data banks

% relative to GDP.

Source: ATAF, OECD, own calculation.


Overall, figures in both data banks show relatively strong deviations.

2 Reporting and non-reporting countries

The fact that not all African countries report tax revenues raises the question whether there are circumstances that foster the likelihood to report tax revenues. We do this analysis based on selected variables available in the Africa Monitor. A major result is significant difference in governance indicators for those countries reporting tax revenues to the data banks and those that do not. They are stronger in countries that report taxes to both organizations, OECD and ATAF. With respect to GDP per capita and demographics the results are mixed. It seems that richer and older societies tend to report to the OECD data bank. However, with respect to the ATAF data bank this relation does not hold. The main tendency of these results is valid for observations from the year 2021 (Table 3 and 4) as well as for the whole sample (Table 5 and 6).

Table 3: Differences between countries reporting tax revenues via the OECD and non-reporting countries in 2021

OECD reporting

OECD non-reporting

Difference

Variable

Obs.

Median

Mean

Std. Dev.

Obs.

Median

Mean

Std. Dev.

Median

Mean

t-value

NGDPD

33

16.1

65.0

120.9

21

7.6

28.7

41.6

8.5

36.3

1.6

NY_GDP_PCAP_KD

33

1610

2928

3345

19

1214

1693

2011

396

1235

1.6

FITB_PA_A

15

4.6

5.3

3.8

5

12.8

11.8

8.4

-8.2

-6.5

-1.7

LUR_PT_A

6

12.3

14.1

7.8

4

5.5

7.7

5.5

6.8

6.4

1.5

GGR_NGDP

33

19.4

20.7

7.8

21

20.1

22.7

12.3

-0.6

-2.0

-0.7

GGX_NGDP

33

25.7

25.6

8.7

21

23.5

24.9

10.3

2.2

0.7

0.3

GGXCNL_NGDP

33

-5.9

-4.9

3.3

21

-3.1

-2.2

4.5

-2.8

-2.7

-2.4

GGXONLB_NGDP

33

-3.6

-2.5

2.5

21

-1.6

-0.7

4.4

-2.0

-1.8

-1.7

GGXWDG_NGDP

33

63.7

63.0

23.8

19

66.6

78.0

42.1

-2.8

-15.1

-1.4

BCA_NGDPD

33

-4.9

-5.3

5.9

21

-3.2

-3.8

10.3

-1.7

-1.5

-0.6

WGI_PC1

33

-1.5

-1.2

1.5

21

-2.2

-2.6

1.3

0.8

1.4

3.7

GE_EST

33

-0.6

-0.5

0.6

21

-1.2

-1.2

0.6

0.6

0.7

4.0

RL_EST

33

-0.4

-0.4

0.6

21

-1.0

-1.1

0.5

0.6

0.7

4.6

RQ_EST

33

-0.6

-0.5

0.6

21

-1.0

-1.2

0.5

0.4

0.6

4.3

VA_EST

33

-0.5

-0.4

0.7

21

-1.0

-0.9

0.6

0.5

0.5

2.6

IEF

33

57.3

58.0

6.0

18

51.7

51.6

6.4

5.7

6.4

3.5

IEF_GI

33

32.2

33.8

12.9

18

27.0

27.3

6.1

5.2

6.6

2.5

IEF_TB

33

77.1

76.1

8.9

18

77.0

76.4

8.6

0.1

-0.3

-0.1

SP_POP_0014_TO_ZS

33

39.4

37.7

7.7

21

41.1

41.0

5.2

-1.7

-3.3

-1.9

SP_POP_65UP_TO_ZS

33

3.2

4.0

2.2

21

3.1

3.3

1.0

0.0

0.7

1.5

SP_URB_TOTL_IN_ZS

33

46.2

47.3

18.7

21

44.6

47.1

19.6

1.6

0.2

0.0

DT_ODA_ODAT_GN_ZS

32

3.5

4.7

4.1

19

10.1

10.3

8.7

-6.7

-5.6

-2.6

DT_ODA_ODAT_PC_ZS

32

57.3

67.2

52.5

21

70.3

91.9

74.6

-13.0

-24.7

-1.3

The variable description can be found in Table A 1.

Source: Africa Monitor, OECD, own calculations.


Table 4: Differences between countries reporting tax revenues via the ATAF and non-reporting countries in 2021

ATAF reporting

ATAF non-reporting

Difference

Variable

Obs.

Median

Mean

Std. Dev.

Obs.

Median

Mean

Std. Dev.

Median

Mean

t-value

NGDPD

36

16.7

48.3

97.7

18

12.5

55.9

104.1

4.2

-7.6

-0.5

NY_GDP_PCAP_KD

36

1236

2403

3241

16

1651

2642

2323

-415

-239

-0.3

FITB_PA_A

17

4.6

6.0

5.0

3

12.7

12.0

8.7

-8.1

-6.0

-5.0

LUR_PT_A

6

14.0

14.3

8.3

4

6.7

7.4

3.6

7.3

6.9

2.0

GGR_NGDP

36

18.8

20.4

7.8

18

22.1

23.7

12.6

-3.3

-3.3

-2.5

GGX_NGDP

36

24.9

25.4

8.5

18

24.7

25.4

10.8

0.2

0.0

0.0

GGXCNL_NGDP

36

-5.7

-5.0

2.9

18

-2.7

-1.7

5.0

-3.0

-3.3

-6.7

GGXONLB_NGDP

36

-2.9

-2.5

2.5

18

-1.7

-0.4

4.6

-1.2

-2.1

-5.1

GGXWDG_NGDP

36

66.2

68.8

31.3

16

58.0

67.6

35.0

8.2

1.3

0.2

BCA_NGDPD

36

-4.9

-5.9

7.0

18

-3.0

-2.4

9.1

-1.9

-3.5

-3.0

WGI_PC1

36

-1.4

-1.3

1.5

18

-2.6

-2.7

1.4

1.1

1.4

5.8

GE_EST

36

-0.7

-0.6

0.6

18

-1.0

-1.1

0.7

0.3

0.5

4.7

RL_EST

36

-0.6

-0.5

0.6

18

-1.1

-1.1

0.6

0.5

0.5

5.3

RQ_EST

36

-0.6

-0.6

0.6

18

-1.1

-1.2

0.6

0.5

0.6

6.6

VA_EST

36

-0.4

-0.4

0.7

18

-1.1

-1.1

0.6

0.8

0.7

6.2

IEF

36

57.4

56.6

7.3

15

55.7

53.6

4.9

1.7

3.0

2.5

IEF_GI

36

31.2

32.8

12.3

15

23.6

28.3

8.2

7.6

4.5

2.2

IEF_TB

36

77.7

77.1

9.1

15

74.0

74.1

7.5

3.7

3.0

1.9

SP_POP_0014_TO_ZS

36

41.0

39.4

6.9

18

39.9

38.0

7.2

1.2

1.4

1.2

SP_POP_65UP_TO_ZS

36

3.1

3.5

1.9

18

3.6

4.1

1.8

-0.5

-0.6

-1.9

SP_URB_TOTL_IN_ZS

36

44.0

44.0

17.7

18

51.4

53.8

19.8

-7.4

-9.9

-3.3

DT_ODA_ODAT_GN_ZS

35

5.3

6.7

5.5

16

3.9

7.1

9.1

1.4

-0.4

-0.4

DT_ODA_ODAT_PC_ZS

35

59.3

69.6

50.1

18

70.1

91.4

81.7

-10.8

-21.8

-2.6

The variable description can be found in Table A 1.

Source: Africa Monitor, ATAF, own calculations.


Table 5: Differences between countries reporting tax revenues via the OECD and non-reporting countries in 2010-2021

OECD reporting

OECD non-reporting

Difference

Variable

Obs.

Median

Mean

Std. Dev.

Obs.

Median

Mean

Std. Dev.

Median

Mean

t-value

NGDPD

396

13.7

55.2

108.5

250

7.6

29.6

45.0

6.1

25.7

4.2

NY_GDP_PCAP_KD

396

1556

2935

3309

230

1072

1716

2102

484

1218

5.6

FITB_PA_A

197

6.7

8.1

5.4

76

12.8

10.1

6.6

-6.1

-2.0

-2.3

LUR_PT_A

151

7.8

9.8

7.0

58

5.5

7.3

5.6

2.2

2.5

2.7

GGR_NGDP

396

19.5

21.4

8.9

248

20.1

21.8

10.4

-0.6

-0.4

-0.5

GGX_NGDP

396

23.1

25.0

9.2

248

23.5

25.4

11.2

-0.3

-0.4

-0.4

GGXCNL_NGDP

396

-3.6

-3.6

4.1

248

-3.1

-3.6

5.8

-0.5

0.0

0.0

GGXONLB_NGDP

396

-1.9

-1.9

3.8

248

-1.6

-2.5

5.8

-0.3

0.7

1.6

GGXWDG_NGDP

396

42.5

46.1

23.3

227

66.6

61.1

44.1

-24.1

-15.0

-4.8

BCA_NGDPD

396

-5.5

-6.2

7.9

248

-3.2

-5.5

12.2

-2.3

-0.7

-0.9

WGI_PC1

396

-1.4

-1.2

-1.4

251

-2.2

-2.6

1.3

0.8

1.4

12.7

GE_EST

396

-0.6

-0.6

-0.6

251

-1.2

-1.2

0.5

0.6

0.6

13.7

RL_EST

396

-0.5

-0.5

-0.6

251

-1.0

-1.1

0.5

0.6

0.6

14.4

RQ_EST

396

-0.5

-0.5

-0.6

251

-1.0

-1.2

0.5

0.5

0.7

15.2

VA_EST

396

-0.4

-0.4

0.7

251

-1.0

-1.0

0.7

0.6

0.5

9.2

IEF

396

56.5

56.6

7.1

212

51.7

50.5

6.8

4.9

6.1

10.3

IEF_GI

396

31.0

33.0

11.3

212

27.0

27.2

6.1

4.0

5.9

8.3

IEF_TB

396

75.7

74.7

9.3

212

77.0

76.0

8.1

-1.3

-1.2

-1.7

SP_POP_0014_TO_ZS

396

41.1

38.8

7.6

252

41.1

42.0

5.0

0.0

-3.2

-6.5

SP_POP_65UP_TO_ZS

396

3.2

3.8

1.7

252

3.1

3.2

0.9

0.0

0.6

5.8

SP_URB_TOTL_IN_ZS

396

43.4

44.8

18.0

252

44.6

44.7

18.9

-1.3

0.1

0.1

DT_ODA_ODAT_GN_ZS

392

3.9

5.2

4.9

232

10.1

10.3

9.9

-6.2

-5.1

-7.4

DT_ODA_ODAT_PC_ZS

392

53.3

69.0

73.7

251

70.3

82.0

69.2

-16.9

-13.0

-2.3

The variable description can be found in Table A 1.

Annual data.

Source: Africa Monitor, ATAF, own calculations.


Table 6: Differences between countries reporting tax revenues via the ATAF and non-reporting countries in 2010-2021

ATAF reporting

ATAF non-reporting

Difference

Variable

Obs.

Median

Mean

Std. Dev.

Obs.

Median

Mean

Std. Dev.

Median

Mean

t-value

NGDP

402

13.8

48.3

97.7

263

12.5

55.9

104.1

1.4

1.4

0.2

NY_GDP_PCAP_KD

402

1112

2316

3068

224

1694

2795

2799

-581

-480

-1.9

FITB_PA_A

227

7.2

6.0

5.0

49

12.7

12.0

8.7

-5.5

0.3

0.3

LUR_PT_A

154

5.5

14.3

8.3

55

6.7

7.4

3.6

-1.1

-3.4

-3.9

GGR_NGDP

402

18.2

20.4

7.8

261

22.1

23.7

12.6

-3.8

-1.9

-2.4

GGX_NGDP

402

23.0

25.4

8.5

261

24.7

25.4

10.8

-1.8

-1.2

-1.4

GGXCNL_NGDP

402

-3.7

-5.0

2.9

261

-2.7

-1.7

5.0

-0.9

-0.7

-1.6

GGXONLB_NGDP

402

-2.0

-2.5

2.5

261

-1.7

-0.4

4.6

-0.3

0.0

0.0

GGXWDG_NGDP

402

41.4

68.8

31.3

238

58.0

67.6

35.0

-16.6

-11.0

-3.6

BCA_NGDPD

402

-5.4

-5.9

7.0

261

-3.0

-2.4

9.1

-2.4

-2.5

-3.0

WGI_PC1

402

-1.4

-1.3

1.5

245

-2.6

-2.7

1.4

1.2

1.4

13.1

GE_EST

402

-0.7

-0.6

0.6

245

-1.0

-1.1

0.7

0.3

0.5

10.4

RL_EST

402

-0.5

-0.5

0.6

245

-1.1

-1.1

0.6

0.5

0.5

11.7

RQ_EST

402

-0.5

-0.6

0.6

245

-1.1

-1.2

0.6

0.6

0.7

14.8

VA_EST

402

-0.3

-0.4

0.7

245

-1.1

-1.1

0.6

0.9

0.7

14.1

IEF

402

56.6

56.6

7.3

222

55.7

53.6

4.9

0.8

5.5

9.9

IEF_GI

402

30.9

32.8

12.3

222

23.6

28.3

8.2

7.3

5.6

7.5

IEF_TB

402

76.5

77.1

9.1

222

74.0

74.1

7.5

2.5

1.3

1.7

SP_POP_0014_TO_ZS

402

42.9

39.4

6.9

246

39.9

38.0

7.2

3.0

1.5

2.6

SP_POP_65UP_TO_ZS

402

3.1

3.5

1.9

246

3.6

4.1

1.8

-0.5

-0.4

-3.0

SP_URB_TOTL_IN_ZS

402

41.6

44.0

17.7

246

51.4

53.8

19.8

-9.9

-9.2

-6.0

DT_ODA_ODAT_GN_ZS

398

5.4

6.7

5.5

226

3.9

7.1

9.1

1.5

0.6

0.9

DT_ODA_ODAT_PC_ZS

398

58.0

69.6

50.1

245

70.1

91.4

81.7

-12.0

-1.9

-0.3

The variable description can be found in Table A 1.

Annual data.

Source: Africa Monitor, ATAF, own calculations.


In the following, the results will be based on the OECD data bank.

3 Comparison with tax revenues in OECD countries

Roughly half of the countries exhibit tax revenues of less than 15% relative to GDP, while South Africa, Morocco, Tunisia, and the Seychelles surpass the 20% mark. The overall landscape of taxation across African countries is notably heterogeneous. However, certain countries show patterns akin to the OECD average, particularly evident in the personal income tax (1100) for Lesotho, Namibia, and South Africa.

In African nations, the value-added tax (5111) tends to be lower than in the OECD, although some countries reach comparable levels. Despite its lower position, it remains a relatively significant tax for many African countries. Social security contributions (2000) yield weak revenues across the board, with only Tunisia and Morocco boasting substantial income from this source.

Across almost all tax categories, revenues relative to GDP in Africa are lower than those in the OECD. Notably, taxes on corporate income (1200) are on par with OECD levels. Customs and import duties (5123) are even higher in many African countries and play a more significant role relative to total tax revenues compared to the OECD.

Interestingly, for some countries, tax revenues are not the primary source of government income; international grants hold more prominence.

Figure 8: Tax revenues in African Countries in comparison to OECD figures (in %)

Relative to GDP in per cent. Average for the period 2010 to 2021.

Source: OECD, own calculations.


5 Which tax under which circumstances?

To get a first impression about the roots of the heterogeneity in African taxation patterns the correlation between tax revenues and other economic variables are calculated. Strongest correlations can be found between indicators measuring the quality of governance and overall tax revenues. On the other hand, there is negative correlation between the share of young people and tax revenues. The cross-sectional correlation between GDP per capita and tax revenues is quite strong for some taxes, but not overwhelming.

Table 7: Correlation between tax revenues rel. to GDP and selected variables of the Africa Monitor (country specific means)

1000

1100

1200

2000

3000

4000

5000

5111

5121

5123

5124

5200

Total Tax

NGDPD

-0.43

0.33

-0.34

0.21

0.06

0.29

0.30

0.43

0.30

0.18

0.43

-0.21

0.47

NY_GDP_PCAP_KD

0.48

0.22

0.64

0.06

0.07

0.35

0.35

0.24

0.53

0.28

0.24

0.55

0.49

FITB_PA_A

-0.29

-0.29

-0.19

-0.12

-0.24

0.49

-0.49

-0.63

-0.16

0.08

-0.63

0.40

-0.49

LUR_PT_A

0.70

0.69

0.41

0.10

-0.10

0.28

-0.01

0.35

-0.05

0.35

0.35

0.08

0.41

GGR_NGDP

0.72

0.70

0.38

0.03

0.17

0.34

0.28

0.55

0.18

0.35

0.55

0.18

0.54

GGX_NGDP

0.77

0.76

0.39

0.07

0.21

0.37

0.29

0.59

0.22

0.38

0.59

-0.15

0.58

GGXCNL_NGDP

-0.25

-0.29

-0.08

-0.15

-0.16

-0.13

-0.04

-0.17

-0.18

0.14

-0.17

0.11

-0.21

GGXONLB_NGDP

-0.11

-0.21

-0.13

-0.05

-0.13

-0.04

-0.14

-0.10

-0.11

0.16

-0.10

0.25

-0.01

GGXWDG_NGDP

0.12

0.18

-0.12

0.21

-0.07

0.48

0.54

-0.43

0.41

0.40

-0.43

0.18

0.44

BCA_NGDPD

-0.04

-0.06

-0.03

0.02

-0.22

0.00

-0.30

0.14

0.27

-0.31

0.14

0.08

-0.11

GE_EST

0.57

-0.52

0.28

-0.11

0.12

0.50

0.61

0.66

0.64

0.13

0.66

0.56

0.72

RL_EST

0.53

0.55

-0.17

0.06

0.18

-0.46

0.54

0.68

0.50

0.11

0.68

0.44

0.64

RQ_EST

0.45

-0.46

0.08

-0.03

0.08

-0.48

0.54

0.64

-0.51

-0.13

0.64

0.52

0.60

VA_EST

0.38

0.48

-0.07

0.10

0.05

0.47

0.53

0.63

0.37

0.08

0.63

0.30

0.51

IEF

-0.25

0.22

0.00

0.00

0.05

-0.36

0.41

0.48

0.39

-0.10

0.48

0.47

-0.41

IEF_GI

0.57

0.57

-0.24

0.06

0.14

0.45

0.55

0.68

-0.48

0.14

0.68

0.43

0.66

IEF_TB

0.29

0.28

0.24

0.09

0.09

0.09

0.05

0.09

0.26

0.00

0.09

0.32

0.12

IC_BUS_EASE_DFRN_XQ_DB1719

0.57

0.52

0.33

0.24

-0.06

0.45

0.50

0.57

0.58

-0.21

0.57

0.44

0.67

SP_POP_0014_TO_ZS

-0.58

-0.49

-0.42

-0.39

0.07

-0.64

-0.57

-0.61

-0.67

-0.22

-0.61

-0.51

-0.77

SP_POP_65UP_TO_ZS

0.42

0.37

0.36

0.45

0.05

0.65

0.61

0.59

0.71

-0.17

0.59

0.58

0.74

SP_URB_TOTL_IN_ZS

0.19

0.01

0.29

0.28

0.16

-0.32

0.07

0.08

0.02

0.03

0.08

0.04

0.25

DT_ODA_ODAT_GN_ZS

-0.32

-0.06

-0.48

-0.23

-0.14

0.24

-0.01

-0.03

-0.05

0.35

-0.03

0.22

-0.26

DT_ODA_ODAT_PC_ZS

-0.19

-0.26

0.08

0.09

-0.14

0.33

-0.61

-0.45

-0.40

0.46

-0.45

0.30

-0.44

The variable descriptions can be found in Table A1 and Table A2 (taxes). Red marking hints to correlations with absolute values above 0.5.

Source: Africa Monitor, OECD, own calculations.


Table 8: Number of observations corresponding to the results in Table 7

1000

1100

1200

2000

3000

4000

5000

5111

5121

5123

5124

5200

Total Tax

NGDPD

33

32

32

28

33

29

33

33

33

33

33

33

33

NY_GDP_PCAP_KD

33

32

32

28

33

29

33

33

33

33

33

33

33

FITB_PA_A

17

17

17

16

17

13

17

17

17

17

17

17

17

LUR_PT_A

32

31

31

27

32

27

32

32

32

32

32

32

32

GGR_NGDP

33

32

32

28

33

29

33

33

33

33

33

33

33

GGX_NGDP

33

32

32

28

33

29

33

33

33

33

33

33

33

GGXCNL_NGDP

33

32

32

28

33

29

33

33

33

33

33

33

33

GGXONLB_NGDP

33

32

32

28

33

29

33

33

33

33

33

33

33

GGXWDG_NGDP

33

32

32

28

33

29

33

33

33

33

33

33

33

BCA_NGDPD

33

32

32

28

33

29

33

33

33

33

33

33

33

GE_EST

33

32

32

28

33

29

33

33

33

33

33

33

33

RL_EST

33

32

32

28

33

29

33

33

33

33

33

33

33

RQ_EST

33

32

32

28

33

29

33

33

33

33

33

33

33

VA_EST

33

32

32

28

33

29

33

33

33

33

33

33

33

IEF

33

32

32

28

33

29

33

33

33

33

33

33

33

IEF_GI

33

32

32

28

33

29

33

33

33

33

33

33

33

IEF_TB

33

32

32

28

33

29

33

33

33

33

33

33

33

IC_BUS_EASE_DFRN_XQ_DB1719

33

32

32

28

33

28

33

33

33

33

33

33

33

SP_POP_0014_TO_ZS

33

32

32

28

33

29

33

33

33

33

33

33

33

SP_POP_65UP_TO_ZS

33

32

32

28

33

29

33

33

33

33

33

33

33

SP_URB_TOTL_IN_ZS

33

32

32

28

33

29

33

33

33

33

33

33

33

DT_ODA_ODAT_GN_ZS

33

32

32

28

33

29

33

33

33

33

33

33

33

DT_ODA_ODAT_PC_ZS

33

32

32

28

33

29

33

33

33

33

33

33

33

The variable descriptions can be found in Table A1 and Table A2 (taxes).

Source: Africa Monitor, OECD, own calculations


6 Tax revenues and the business cycle

An initial assessment of the impact of business cycle fluctuations on tax revenues involves examining the correlation between real GDP growth and changes in tax revenues relative to GDP. If tax revenues are directly proportional to GDP, the corresponding correlation will be zero. A positive correlation may result from a progressive tax system (acting as an automatic stabilizer) or an active fiscal policy. Conversely, a negative correlation could stem from reliance on taxes less tied to economic activity or during periods of fiscal stress when austerity measures are implemented by the government.

For various countries, the correlation is notably positive, indicating progressive taxation and stabilizing fiscal policies (see Table 9). Particularly noteworthy is the case of Botswana, where a 1-percentage-point increase in GDP corresponds to a 0.2-percentage-point rise in the tax share (refer to Figure 9). A more substantial positive correlation is evident in South Africa, influenced in part by the impact of the COVID-19 outbreak. In contrast, Sierra Leone exhibits a markedly negative correlation, primarily attributed to data from the years of the Ebola outbreak.

These examples highlight that the relationship between economic fluctuations and taxation can be influenced by specific events. A more in-depth, country-specific analysis is warranted.

Table 9: Correlation between real GDP growth and tax revenues relative to GDP (2011-2021)

1000

1100

1200

2000

3000

4000

5000

5111

5121

5123

5124

5200

Total Tax

BFA

0.84

0.00

0.79

-0.04

0.15

0.12

0.26

0.17

0.72

0.26

-0.36

0.49

BWA

0.81

0.20

0.19

-0.05

0.49

-0.05

0.02

0.84

CIV

-0.40

-0.39

0.72

0.24

0.46

0.75

0.74

0.38

0.59

0.74

0.14

0.56

CMR

0.19

0.38

0.08

-0.22

0.01

0.07

0.51

0.56

-0.36

0.42

0.56

0.53

0.57

COD

0.64

0.35

0.57

-0.03

0.18

-0.18

-0.13

-0.04

0.32

0.55

-0.04

0.31

0.29

COG

0.05

0.00

0.09

-0.19

0.27

-0.07

0.01

-0.26

0.10

0.01

0.03

CPV

0.02

-0.56

0.38

0.00

0.17

0.02

0.10

0.02

0.02

0.11

EGY

-0.08

0.10

-0.14

0.04

0.55

0.56

0.21

0.49

0.56

-0.30

0.31

GAB

0.52

0.42

0.49

-0.20

0.01

0.15

0.28

0.20

-0.09

0.28

0.33

0.49

GHA

0.58

0.40

0.51

-0.09

-0.26

0.06

-0.43

0.23

0.06

0.10

0.09

GIN

0.03

0.48

-0.11

0.24

0.07

0.07

0.14

-0.25

-0.05

0.14

0.09

GNQ

0.23

-0.25

0.26

-0.13

-0.40

-0.37

-0.08

-0.23

-0.37

0.71

0.22

KEN

-0.53

-0.17

-0.24

0.32

0.46

0.39

0.35

0.38

0.39

0.23

-0.01

LSO

0.30

0.25

0.13

0.01

0.24

-0.29

0.24

0.30

MAR

-0.48

-0.17

-0.47

-0.88

0.24

0.22

0.15

-0.14

-0.19

0.15

-0.06

-0.45

MDG

0.54

-0.02

0.56

-0.41

0.76

0.62

0.06

0.59

0.62

0.07

0.74

MLI

-0.24

-0.06

-0.24

-0.03

-0.12

0.19

0.17

0.11

-0.03

0.25

0.11

0.25

0.05

MRT

-0.19

0.01

-0.27

0.14

-0.12

0.38

0.49

-0.16

0.34

0.49

-0.15

0.21

MUS

-0.30

-0.43

-0.02

-0.11

-0.04

-0.01

0.42

0.02

0.53

-0.14

0.02

0.41

0.18

MWI

0.52

0.56

0.16

0.58

0.49

0.33

0.52

0.49

0.57

NAM

0.07

-0.07

0.09

-0.34

0.01

0.42

0.43

-0.26

0.43

-0.07

0.50

NER

0.04

-0.03

0.01

-0.20

0.00

0.02

-0.04

0.11

-0.34

-0.51

0.11

-0.30

-0.03

NGA

0.19

-0.17

0.19

0.15

0.00

-0.37

-0.27

0.11

-0.37

-0.47

0.18

RWA

0.05

0.23

-0.07

-0.37

-0.88

0.51

0.41

0.31

0.41

0.41

0.10

0.34

SEN

0.37

0.07

0.25

0.36

-0.24

0.13

0.25

0.40

0.07

0.21

0.40

-0.19

0.32

SLE

-0.07

0.04

-0.19

-0.44

-0.73

0.17

-0.57

-0.73

-0.50

SWZ

-0.11

-0.37

0.09

-0.36

0.39

-0.13

0.27

0.22

0.27

0.03

-0.24

SYC

0.10

-0.09

0.24

-0.22

-0.16

0.30

0.34

0.03

-0.01

0.34

0.01

0.15

TCD

-0.39

0.40

-0.43

0.35

0.30

-0.27

-0.40

-0.16

-0.11

-0.40

-0.37

TGO

0.37

0.09

0.41

0.39

0.30

0.36

-0.29

0.13

0.36

0.34

TUN

-0.05

-0.23

0.06

-0.76

0.00

0.40

0.44

-0.07

0.18

0.44

0.02

-0.08

UGA

0.54

0.07

0.36

0.60

0.40

0.27

0.46

0.40

0.46

0.64

ZAF

0.82

0.35

0.60

0.89

0.90

-0.35

0.57

0.12

0.69

0.73

0.12

0.44

0.87


Figure 9: GDP growth rates and the change in tax revenues

 

GDP: real GDP growth rates in percent. Total Tax: change in tax revenues relative to GDP in percentage points.


7 Appendix: Variable lists

Table A1: Variables used in this data story taken from the Africa Monitor.

NGDPD Gross Domestic Product, Current Prices: U.S. Dollars (Billions)
NY_GDP_PCAP_KD GDP per Capita (Constant 2015 US$)
NGDP_RPCH Gross Domestic Product, Constant Prices: Percent Change
FITB_PA_A Government Securities, Treasury Bill Rate: Percent per Annum
LUR_PT_A Unemployment Rate: Percent
GGR_NGDP General Government Revenue: Percent of GDP
GGX_NGDP General Government Total Expenditure: Percent of GDP
GGXCNL_NGDP General Government Net Lending/Borrowing: Percent of GDP
GGXONLB_NGDP General Government Primary Net Lending/Borrowing: Percent of GDP
GGXWDG_NGDP General Government Gross Debt: Percent of GDP
BCA_NGDPD Current Account Balance (WEO): Percent of GDP
WGI_PC1 First Principal Component of 6 WGI Indicator Estimates
GE_EST Government Effectiveness: Estimate (-2.5 - 2.5)
RL_EST Rule of Law: Estimate (-2.5 - 2.5)
RQ_EST Regulatory Quality: Estimate (-2.5 - 2.5)
VA_EST Voice and Accountability: Estimate (-2.5 - 2.5)
IEF Index of Economic Freedom: Overall Score (0-100)
IEF_GI Index of Economic Freedom: Government Integrity (0-100)
IEF_TB Index of Economic Freedom: Tax Burden (0-100)
IC_BUS_EASE_DFRN_XQ_DB1719 Ease of Doing Business: Score (0-100)
SP_POP_0014_TO_ZS Population Ages 0-14 (% of Total Population)
SP_POP_65UP_TO_ZS Population Ages 65 and above (% of Total Population)
SP_URB_TOTL_IN_ZS Urban Population (% of Total Population)
DT_ODA_ODAT_GN_ZS Net ODA Received (% of GNI)
DT_ODA_ODAT_PC_ZS Net ODA Received per Capita (Current US$)


Table A2: Numbering of different taxes according to the OECD data set

1000 Taxes on income, profits and capital gains
1100 Taxes on income, profits and capital gains of individuals
1200 Taxes on income, profits and capital gains of corporates
2000 Social security contributions (SSC)
3000 Taxes on payroll and workforce
4000 Taxes on property
5000 Taxes on goods and services
5111 Value added taxes
5121 Excises
5123 Customs and import duties
5124 Taxes on exports
5200 Taxes on use of goods and perform activities